РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
Устройство дуговой защиты AQ 101
Устройство дуговой защиты AQ 101. Руководство по эксплуатации

Версия 1.3
Дата Ноябрь 2011
Изменения
- Обновлены селективная и неселективная схемы защиты в разделе 3.5.1
- Пересмотрено описание DIP-переключателей

Внимательно прочтите данное руководство и ознакомьтесь с устройствами дуговой защиты перед их монтажом, наладкой, эксплуатацией и обслуживанием.

Монтаж, наладка, эксплуатация и обслуживание электрооборудования должны производиться только квалифицированным персоналом. В процессе работы с оборудованием необходимо соблюдать правила техники безопасности. Компания Arcteq не несет ответственности за любые последствия, вызванные использованием материала данного руководства.

Компания Arcteq сохраняет за собой право внесения изменений в данное руководство без последующего уведомления.
СОДЕРЖАНИЕ

1 СОКРАЩЕНИЯ .. 6
2 ОБЩИЕ СВЕДЕНИЯ.. 7
 2.1 Характеристики устройства AQ 101 .. 7
 2.2 Упрощенная блок-схема устройства .. 9
3 РАБОТА УСТРОЙСТВА И ЕГО КОНФИГУРИРОВАНИЕ .. 10
 3.1 Функции светодиодной индикации .. 10
 3.2 Краткое описание работы светодиодной индикации ... 11
 3.3 Клавиатура .. 12
 3.3.1 Автоконфигурирование (настройка устройства) .. 12
 3.4 Сброс светодиодной индикации ... 13
 3.5 Настройки DIP-переключателей ... 13
 3.5.1 Логические схемы работы устройства ... 15
 3.6 Энергонезависимая память ... 17
4 ДАТЧИКИ ДУГИ .. 18
 4.1 Точечный датчик дуги AQ 01 .. 18
 4.1.1 Монтаж и подключение датчика AQ 01 .. 19
 4.1.2 Технические характеристики датчика AQ 01 .. 20
 4.2 Петлевой оптоволоконный датчик дуги AQ 06 ... 20
 4.2.1 Технические характеристики датчика AQ 06 .. 21
 4.3 Петлевой оптоволоконный датчик дуги AQ 07 ... 21
 4.3.1 Технические характеристики датчика AQ 07 .. 22
 4.4 Петлевой оптоволоконный датчик дуги AQ 08 ... 22
 4.4.1 Технические характеристики датчика AQ 08 .. 24
 4.5 Типы применяемых датчиков .. 24
 4.6 Подключение датчиков дуги .. 24
 4.6.1 Подключение точечного датчика дуги AQ01 .. 24
5 САМОДИАГНОСТИКА ... 32
6 ПРИМЕРЫ ВЫПОЛНЕНИЯ СХЕМ ДУГОВОЙ ЗАЩИТЫ ... 33
 6.1 Схема защиты электроустановок СН или НН (пуск по фактам появления дуги и
 возникновения максимального тока) ... 33
 6.2 Схема защиты ветряной электроустановки (пуск по факту появления дуги) 36
 6.3 Устройство резервирования при отказе выключателя (УРОВ) 38
7 ПОДКЛЮЧЕНИЕ УСТРОЙСТВА К ВНЕШНИМ ЦЕПЯМ ... 39
7.1 Выходы устройства .. 41
 7.1.1 Выходные отключающие реле Т1 и Т2 ... 41
 7.1.2 Выходные отключающие реле Т3 и Т4 ... 41
 7.1.3 Дискретный выход ДВых1 ... 41
 7.1.4 Реле неисправности устройства SF ... 41
7.2 Входы устройства .. 41
 7.2.1 Каналы для подключения датчиков дуги S1, S2, S3, S4 и S5..... 42
 7.2.2 Дискретные входы ДВх1 и ДВх2 ... 42
7.3 Оперативное питание .. 42
8 СХЕМА ПОДКЛЮЧЕНИЯ УСТРОЙСТВА .. 44
9 ГАБАРИТНЫЕ РАЗМЕРЫ И МОНТАЖ УСТРОЙСТВА ... 45
10 ТЕСТИРОВАНИЕ.. 48
 10.1 Проверка работоспособности устройства при отключении по факту появления дуги ... 48
 10.2 Проверка работоспособности устройства при отключении по фактам появления дуги и возникновения максимального тока ... 49
 10.3 Проверка функции УРОВ .. 50
 10.4 Проверка времени срабатывания устройства дуговой защиты.............. 50
 10.5 Пример плана проверки ... 51
11 РУКОВОДСТВО ПО УСТРАНЕНИЮ НЕИСПРАВНОСТЕЙ .. 53
12 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВА .. 54
 12.1 Время срабатывания/возврата ... 54
 12.2 Оперативное питание .. 54
 12.3 Выходные отключающие реле Т1, Т2, Т3, Т4 ... 54
 12.4 Дискретный выход ДВых1 ... 54
 12.5 Дискретные входы ДВх1, ДВх2 ... 55
 12.6 Испытания на электромагнитную совместимость .. 55
 12.7 Испытания повышенным напряжением ... 55
 12.8 Механические испытания ... 55
 12.9 Корпус и упаковка ... 56
 12.10 Климатические условия эксплуатации ... 56
13 ЗАКАЗНЫЕ КОДЫ .. 57
 13.1 Устройство AQ 101 с точечными датчиками дуги .. 57
 13.2 Устройство AQ 101D (монтаж на рейке DIN) .. 57
 13.3 Датчики дуги AQ 0x ... 58
1 СОКРАЩЕНИЯ
СВ – высоковольтный выключатель
УРОВ – устройство резервирования отказа выключателя
ТТ – трансформатор тока
ЭМС – электромагнитная совместимость
СИД – светодиод
НЗ – нормально закрытый контакт
НО – нормально открытый контакт
SAS – стандартная схема дуговой защиты
SF – неисправность устройства
МП – микропроцессор
НН – низкое напряжение
СН – среднее напряжение
2 ОБЩИЕ СВЕДЕНИЯ

Устройство дуговой защиты AQ 101 - микропроцессорное устройство дуговой защиты с функцией самодиагностики. Устройство дуговой защиты предназначено для уменьшения объемов повреждений, сопровождающихся горением дуги, что достигается подачей команды на отключение выключателя, через который происходит подпитка места повреждения. Высокая надежность работы AQ 101 достигается благодаря наличию функции самодиагностики, которая обеспечивает непрерывный контроль всех внутренних функций устройства и исправность его внешних цепей.

Устройство AQ 101 разработано в соответствии с новейшими стандартами, принятыми в технике релейной защиты, что позволяет использовать его для защиты оборудования электростанций, работающих на традиционных или возобновляемых источниках энергии, в различных отраслях тяжелой промышленности (таких как нефтегазовая, горнодобывающая, судоходная, металлургия и др.), а также в электрических сетях различного назначения. AQ 101 предназначен для защиты реконструируемого или вновь вводимого в эксплуатацию оборудования распределительных устройств среднего и низкого напряжений, а также щитов управления электродвигателями.

2.1 ХАРАКТЕРИСТИКИ УСТРОЙСТВА AQ 101

AQ 101 - многофункциональное устройство, которое можно использовать как самостоятельное устройство защиты или как часть более сложной системы дуговой защиты. Основные технические характеристики устройства AQ 101:

- Оперативное питание 80-265 В пост./перем. тока или опционально 18-72 В пост. тока
- 4 канала для подключения точечных датчиков дуги
- 1 канал для подключения петлевого оптоволоконного датчика дуги (опционально)
- 2 дискретных входа (номинальное напряжение 24, 110 или 220 В пост. тока)
- 3 нормально разомкнутых контакта выходных реле (цепь прямого отключения)
- 1 нормально разомкнутый или (опционально) нормально замкнутый (электронно) контакт выходного реле (цепь прямого отключения)
- 1 дискретный выход (24 В пост. тока)
- 1 выходное реле неисправности устройства
- 12 светодиодов
- Кнопка управления
Устройство дуговой защиты AQ 101. Руководство по эксплуатации

Рис. 2-1: Устройство дуговой защиты AQ 101 и AQ 101D
2.2 УПРОЩЕННАЯ БЛОК-СХЕМА УСТРОЙСТВА

На Рис. 2-2 представлены основные компоненты устройства AQ101.

Рис. 2-2: Упрощенная блок-схема устройства AQ101
3 РАБОТА УСТРОЙСТВА И ЕГО КОНФИГУРИРОВАНИЕ

3.1 ФУНКЦИИ СВЕТОДИОДНОЙ ИНДИКАЦИИ

Устройство AQ 101 оснащено 12 индикаторными СИД. Для обозначения функции каждого СИД (за исключением СИД «POWER» и «ERROR») предусмотрены специальные кармашки, куда можно вложить бумажную карточку с поясняющим текстом. СИД расположены на передней панели устройства, что обеспечивает удобство визуального контроля их состояния (отсутствует необходимость открытия двери шкафа).

В процессе включения устройство выполняет тестирование СИД. Все СИД загораются на 2 с, затем гаснут. Только синий СИД «POWER» будет продолжать гореть. При включении устройство переходит в режим работы защиты в течение 50 мс, даже если в это время осуществляется тестирование СИД.

В нормальном режиме работы горит только синий СИД «POWER».
Если датчики дуги неактивны, то их СИД не горят. В случае активации датчика дуги более чем на 1.5 мс загорается СИД соответствующего канала. В случае активации датчика соответствующий СИД будет гореть до тех пор, пока не будет произведен его сброс. Для сброса СИД необходимо нажать кнопку «SET».

В случае, когда потеряна связь с датчиком, или возникла ошибка в конфигурации устройства (например, новый датчик подключается без запуска процесса автоконфигурирования см. раздел 3.3.1), соответствующий СИД начинает мигать, и загорается СИД «ERROR».

Для отображения состояния дискретных входов/выходов предусмотрены соответствующие СИД. В случае активации одного из каналов более чем на 1.5 мс загорается соответствующий СИД.
Если устройством подается сигнал на отключение, то загорается соответствующий СИД. Логика работы выходных реле настраивается с помощью DIP-переключателей, см. раздел 3.5.

Все СИД активации каналов и СИД отключающих сигналов работают в режиме запоминания состояния (блинер), даже если DIP-переключатель настроен на режим без запоминания состояния. СИД можно сбросить нажатием кнопки «SET».

Информация о срабатывании СИД хранится в стираемом перепрограммируемом ПЗУ. Это позволяет сохранить необходимую информацию в случае потери оперативного питания устройства. После повторной подачи питания состояние светодиодной индикации отображается на передней панели устройства.
3.2 КРАТКОЕ ОПИСАНИЕ РАБОТЫ СВЕТОДИОДНОЙ ИНДИКАЦИИ

<table>
<thead>
<tr>
<th>СИД</th>
<th>Выкл.</th>
<th>Непрерывно горит</th>
<th>Мигает</th>
<th>Действия при неисправности</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>Синий</td>
<td>Оперативное питание отсутствует</td>
<td>—</td>
<td>Проверьте источник питания</td>
</tr>
<tr>
<td>ERROR</td>
<td>Красный</td>
<td>Нормальный режим работы</td>
<td>Неисправность конфигурации Защита частично функционирует</td>
<td>Проверьте состояние устройства (см. главы 11 и 5)</td>
</tr>
<tr>
<td>T1, T3, T4</td>
<td>Красный</td>
<td>Нормальное состояние</td>
<td>Выходное реле T1, T3, T4 сработало</td>
<td>—</td>
</tr>
<tr>
<td>T2, T4</td>
<td>Красный</td>
<td>Нормальное состояние</td>
<td>Выходное реле T2, T4 сработало</td>
<td>—</td>
</tr>
<tr>
<td>S1</td>
<td>Желтый</td>
<td>Нормальное состояние</td>
<td>Канал 1 датчика активировался из-за появления дуги</td>
<td>Неисправность канала 1 датчика или не выполнена настройка устройства; также может активироваться при повышении давления</td>
</tr>
<tr>
<td>S2</td>
<td>Желтый</td>
<td>Нормальное состояние</td>
<td>Канал 2 датчика активировался из-за появления дуги</td>
<td>Неисправность канала 2 датчика или не выполнена настройка устройства; также может активироваться при повышении давления</td>
</tr>
<tr>
<td>S3</td>
<td>Желтый</td>
<td>Нормальное состояние</td>
<td>Канал 3 датчика активировался из-за появления дуги</td>
<td>Неисправность канала 3 датчика или не выполнена настройка устройства; также может активироваться при повышении давления</td>
</tr>
<tr>
<td>S4</td>
<td>Желтый</td>
<td>Нормальное состояние</td>
<td>Канал 4 датчика активировался из-за появления дуги</td>
<td>Неисправность канала 4 датчика или не выполнена настройка устройства; также может активироваться при повышении давления</td>
</tr>
</tbody>
</table>
Устройство AQ 101 оснащено одной кнопкой (SET), которая используется для выполнения всех необходимых функций, таких как автоконфигурирование (см. раздел 3.3.1), сброс светодиодной индикации и выходных реле.

3.3 КЛАВИАТУРА

После того как все датчики и цепи дискретных сигналов подключены, необходимо выполнить автоконфигурирование устройства. Для этого необходимо нажать и удерживать кнопку «SET» в течение 2 с, после чего СИД датчиков и СИД ДВх1/ДВх2 начнут мигать. Устройство начнет сканирование входов, и в случае, если соединение установлено, соответствующий СИД загорится ровным светом. Если соединение не установлено, то СИД будут продолжать мигать в течение 3 с. По истечении 5 с все светодиоды гаснут. В это время настройки DIP-переключателя сохраняются в энергонезависимой памяти устройства.

Все входы датчиков будут работоспособны, даже если автоконфигурирование не производилось. Автоконфигурирование выполняется только в целях самодиагностики устройства.

Примечание: Для того, чтобы заново выполнить автоконфигурирование, в случае если количество используемых каналов (дискретные входы/выходы, датчики) уменьшилось по сравнению с предыдущей конфигурацией, то перед выполнением процедуры автоконфигурирования необходимо каждый DIP-переключатель передвинуть назад и вперед с интервалом в одну минуту. В случае увеличения количества используемых каналов такие манипуляции с DIP-переключателями не требуются.
3.4 СБРОС СВЕТОДИОДНОЙ ИНДИКАЦИИ

Для сброса светодиодной индикации и сработавших выходных реле необходимо нажать и удерживать в течение 1 с кнопку «SET». В противном случае сработавшие выходные реле будут находиться в сработанном состоянии до тех пор, пока не исчезнет оперативное питание устройства. Светодиодная индикация сохраняется до тех пор, пока она не будет снята вручную, даже в случае исчезновения оперативного питания устройства (см. раздел 3.6).

3.5 НАСТРОЙКИ DIP-ПЕРЕКЛЮЧАТЕЛЕЙ

Функции устройства (например, логика отключения) AQ 101 конфигурируются с помощью DIP-переключателей. С помощью соответствующей настройки DIP-переключателей можно легко запрограммировать различные схемы отключения AQ 101, что дает пользователю возможность изменять логику работы устройства в зависимости от схемы защищаемой электроустановки. Отключение может производиться только по факту появления дуги или по фактам появления дуги и возникновения максимального тока (или по другим факторам, например, снижение напряжения и др.). Для того, чтобы предотвратить ложное срабатывание защиты от естественных источников света на дискретный вход ДВх1 можно подавать сигнал о возникновении максимального тока (или другой) от внешнего устройства. Также с помощью DIP-переключателей можно выполнить пуск схемы УРОВ. DIP-переключатели для удобства пользования расположены на задней панели устройства. См. Рис. 3-1 и Табл. 3-2.

Рис. 3-1: DIP-переключатели

<table>
<thead>
<tr>
<th>DIP-переключатель</th>
<th>Настраиваемая функция</th>
<th>ВКЛ (левое положение)</th>
<th>ВЫКЛ (правое положение)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>L> / L>+I></td>
<td>Отключение при появлении дуги (L>).</td>
<td>Отключение при появлении дуги и возникновении максимального тока (L> + I>). Для отключения необходимо наличие обоих сигналов.</td>
</tr>
</tbody>
</table>

Критерий отключения каналов S2, S3, S4 точечных датчиков и канала оптоволоконного датчика.
Устройство дуговой защиты AQ 101. Руководство по эксплуатации

<table>
<thead>
<tr>
<th>DIP-переключатель</th>
<th>Настраиваемая функция</th>
<th>ВКЛ (левое положение)</th>
<th>ВЫКЛ (правое положение)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7 S1: L> / L> + I></td>
<td>Критерий отключения канала S1 датчика</td>
<td>Отключение при появлении дуги (L>).</td>
</tr>
<tr>
<td>6</td>
<td>C / без запоминания состояния</td>
<td>Режим работы реле T1 и T2</td>
<td>Реле T1 и T2 работают с запоминанием состояния Примечание: реле T3 и T4 всегда работают с запоминанием состояния. Дискретный выход ДВых1 работает без запоминания состояния.</td>
</tr>
<tr>
<td>5</td>
<td>100 / 150 мс</td>
<td>Уставка по времени УРОВ</td>
<td>Время срабатывания УРОВ 100 мс.</td>
</tr>
<tr>
<td>4</td>
<td>Выбор схемы</td>
<td>См. главу 6 и раздел 3.5.1</td>
<td>См. главу 6 и раздел 3.5.1</td>
</tr>
<tr>
<td>3</td>
<td>Выбор схемы</td>
<td>См. главу 6 и раздел 3.5.1</td>
<td>См. главу 6 и раздел 3.5.1</td>
</tr>
<tr>
<td>2</td>
<td>Выбор схемы</td>
<td>См. главу 6 и раздел 3.5.1</td>
<td>См. главу 6 и раздел 3.5.1</td>
</tr>
<tr>
<td>1</td>
<td>Выбор схемы</td>
<td>См. главу 6 и раздел 3.5.1</td>
<td>См. главу 6 и раздел 3.5.1</td>
</tr>
</tbody>
</table>

Табл. 3-2: Настройка DIP-переключателя устройства AQ 101

В разделе 3.5.1 рассматривается внутренняя логика работы устройства и соответствующие настройки DIP-переключателей. Для получения подробной информации о входах и выходах устройства обратитесь к главе 7.
3.5.1 ЛОГИЧЕСКИЕ СХЕМЫ РАБОТЫ УСТРОЙСТВА

В данном разделе описываются логические схемы работы устройства, которые можно настроить с помощью DIP-переключателей 1…4 выбора схемы.

- Логическая схема 0

Логическая схема 0 может применяться как для отдельных устройств дуговой защиты, так и для выполнения неселективной защиты кабельного отсека отходящей линии. С помощью данной схемы можно реализовать защиту с пуском только по факту появления дуги или же с пуском по факту появления дуги и возникновения максимального тока. Более подробную информацию можно найти в буклете AQ SAS™.

Рис. 3-2: Логическая схема 0 работы устройства AQ101
• Логическая схема I

Логическая схема I обычно применяется для реализации селективной дуговой защиты. Оптоволоконный датчик S1 устанавливается в кабельном отсеке ячейки отходящей линии. Оптоволоконный датчик S2 устанавливается в отсеке выключателя и шинном отсеке ячейки отходящей линии. Выходной контакт T1 действует на отключение выключателя отходящей линии. Более подробную информацию можно найти в буклете AQ SAS™.

Рис. 3-3: Логическая схема I работы устройства AQ101
3.6 ЭНЕРГОНЕЗАВИСИМАЯ ПАМЯТЬ

Вся важная информация, такая как настройки DIP-переключателей и файл автоконфигурации (см. раздел 3.3.1), хранится в стираемом перепрограммируемом ПЗУ. Это позволяет обеспечить правильную работу устройства и его функции самодиагностики даже в случае временной потери оперативного питания устройства.

Информация о состоянии светодиодной индикации (см. раздел 3.1) также хранится в энергонезависимой памяти, что позволяет быстро восстановить состояния СИД в случае потери оперативного питания. Это оказывается наиболее полезным в случае потери оперативного питания после срабатывания устройства.

Энергонезависимая память не требует для своей работы наличия внешнего питания.
4 ДАТЧИКИ ДУГИ
Устройства AQ 100 могут оснащаться различными типами датчиков дуги, что позволяет удовлетворить различные требования, предъявляемые к таким датчикам, в зависимости от типа защищаемого распределительного устройства. Применяются точечные и петлевые оптоволоконные датчики дуги.

Точечные датчики дуги обычно устанавливаются в отсеках шкафов распределительного устройства, что позволяет быстро и точно определить место повреждения. Петлевые оптоволоконные датчики дуги применяются для защиты большого участка электроустановки, если нет необходимости в точном определении места повреждения.

4.1 ТОЧЕЧНЫЙ ДАТЧИК ДУГИ AQ 01
AQ 01 — точечный датчик дуги, который определяет появление дуги при помощи светочувствительного фотодиодного элемента. Монтировать датчики в отсеках шкафов необходимо таким образом, чтобы светочувствительный элемент имел наибольшую рабочую зону. Каждый из отсеков шкафа должен оснащаться одним датчиком. Если датчики используются в открытом пространстве (например, для защиты секции шин), то они должны располагаться на расстоянии не более двух метров друг от друга.

По умолчанию уставка по интенсивности светового потока датчика AQ01 установлена на уровне 8000 Лк. По требованию заказчика уставка по интенсивности светового потока датчика может быть установлена на уровне 25000 Лк и 50000 Лк. Датчик не требует пользовательской настройки. Рабочий радиус составляет 180 градусов.

Рис. 4-1: Датчик дуги AQ 01
4.1.1 Монтаж и подключение датчика AQ 01
Датчик AQ 01 монтируется непосредственно на стенке отсека или проходным образом через стенку отсека шкафа. На Датчик AQ 01, смонтированный на стене, изображен датчик, смонтированный на стене. Датчик крепится к стене двумя винтами. Такие же винты используются и при проходном монтаже. Светочувствительный элемент направляется в защищаемый отсек и задняя часть корпуса датчика крепится двумя винтами. В обоих случаях не требуются никакие дополнительные монтажные элементы.

AQ01 поставляется без соединительного кабеля. Подключение соединительного кабеля производится на месте. Клеммные колодки находятся под крышками корпуса датчика, которые легко снимаются для облегчения процесса подключения кабеля. После подключения кабеля крышки необходимо установить обратно на место. Клеммные колодки находятся с двух сторон датчика для того, чтобы обеспечить возможность последовательного соединения до трех датчиков в одну цепь. См. Рис. 4-1: Датчик дуги AQ 01.
4.1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДАТЧИКА AQ 01

<table>
<thead>
<tr>
<th>Уставка по интенсивности светового потока</th>
<th>8000 Лк</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочий радиус</td>
<td>180 градусов</td>
</tr>
<tr>
<td>Степень защиты</td>
<td>IP 64</td>
</tr>
<tr>
<td>Подключение датчика</td>
<td>2 провода и экран</td>
</tr>
<tr>
<td>Кабель для подключения датчика</td>
<td>Экранированная витая пара 0.75 мм²</td>
</tr>
<tr>
<td>Макс. длина кабеля подключения датчика на один канал Maximum sensor cable length per sensor channel</td>
<td>100 м</td>
</tr>
<tr>
<td>Рабочая температура</td>
<td>-20...+85 С</td>
</tr>
</tbody>
</table>

4.2 ПЕТЛЕВОЙ ОПТОВОЛОКОННЫЙ ДАТЧИК ДУГИ AQ 06

AQ 06 - пластиковый петлевой оптоволоконный датчик дуги. Датчики AQ 06 поставляются заказчику в диапазоне длин от 1 до 40 метров. Оптоволоконные датчики AQ 06 распределяются по ячейкам защищаемой электроустановки. Не рекомендуется самостоятельно сращивать или разрезать оптоволокно датчика. Если все же вследствие повреждения есть необходимость разрезать или нарастить оптоволокно, обратитесь в ближайшее представительство компании Arcteq.

Уставка по интенсивности светового потока датчика AQ06 не меняется и составляет 8000 Лк. Датчик не требует пользовательской настройки. Рабочий радиус составляет 360 градусов. См. Рис. 4–3
Приречание: По запросу заказчика концы датчика AQ 06 в целях недопущения срабатывания защиты вне защищаемой зоны могут быть покрыты черной резиной (на любую требуемую длину). Для получения более подробной информации обращайтесь в ближайшее представительство компании Arcteq.

4.2.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДАТЧИКА AQ 06

Уставка по интенсивности светового потока	8000 Лк
Рабочий радиус	360 градусов
Макс. длина	40 м
Диаметр	1 мм
Радиус сгиба	5 см
Рабочая температура	-10...+85 С

4.3 ПЕТЛЕВОЙ ОПТОВОЛОКОННЫЙ ДАТЧИК ДУГИ AQ 07

AQ 07 — петлевой оптоволоконный датчик дуги, который имеет практически неограниченный радиус сгиба. AQ 07 состоит из множества нитей из стекловолокна, покрытых пластиковой оболочкой, что делает датчик очень прочным. Датчики AQ 07 поставляются заказчику в диапазоне длин от 1 до 50 метров. Оптоволоконные датчики AQ 07 распределяются по ячейкам защищаемой электроустановки. Не рекомендуется самостоятельно сращивать или разрезать оптоволокно датчика. Если все же вследствие повреждения есть необходимость разрезать или нарастить оптоволокно, обратитесь в ближайшее представительство компании Arcteq.

Уставка по интенсивности светового потока датчика AQ 07 не меняется и составляет 8000 Лк. Датчик не требует пользовательской настройки. Рабочий радиус составляет 360 градусов. См. Рис. 4–4.
Рис. 4–4: Петлевой оптоволоконный датчик дуги AQ 07

Примечание: По запросу заказчика концы датчика AQ 07 в целях недопущения срабатывания защиты вне защищаемой зоны могут быть покрыты черной резиной (на любую требуемую длину). Для получения более подробной информации обращайтесь в ближайшее представительство компании Arcteq.

4.3.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДАТЧИКА AQ 07

Уставка по интенсивности светового потока	8000 Лк
Рабочий радиус	360 градусов
Макс. длина	50 м
Диаметр	1.2 мм
Радиус сгиба	1 см
Рабочая температура	-40...+85 ºC

4.4 ПЕТЛЕВОЙ ОПТОВОЛОКОННЫЙ ДАТЧИК ДУГИ AQ 08

AQ 08 - оптоволоконный датчик дуги, способный выдерживать температуру до 125 ºC, что позволяет применять его, например, в схеме защиты обмоток генераторов ветровых турбин. AQ 08 имеет практически неограниченный радиус сгиба. AQ 08 состоит из множества нитей из стекловолокна, покрытых пластиковой оболочкой, что делает датчик очень прочным.
Датчики AQ 08 поставляются заказчику в диапазоне длин от 1 до 40 метров. Оптоволоконные датчики AQ 08 распределяются по ячейкам защищаемой электроустановки. Не рекомендуется самостоятельно сращивать или разрезать оптоволокно датчика. Если все же вследствие повреждения есть необходимость разрезать или нарasti оптоволокно, обратитесь в ближайшее представительство компании Arcteq.

Уставка по интенсивности светового потока датчика AQ08 не меняется и составляет 8000 Лк. Датчик не требует пользовательской настройки. Рабочий радиус составляет 360 градусов. См. Рис. 4–5.

Рис. 4–5: Петлевой оптоволоконный датчик дуги AQ 08

Примечание: По запросу заказчика концы датчика AQ 08 в целях недопущения срабатывания защиты вне защищаемой зоны могут быть покрыты черной резиной (на любую требуемую длину). Для получения более подробной информации обращайтесь в ближайшее представительство компании Arcteq.
4.4.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДАТЧИКА AQ 08

Уставка по интенсивности светового потока	8000 Лк
Рабочий радиус	360 градусов
Макс. длина	40 м
Диаметр	1.2 мм
Радиус сгиба	1 см
Рабочая температура	-40...+125°C

4.5 ТИПЫ ПРИМЕНЯЕМЫХ ДАТЧИКОВ

Различные типы датчиков дуги могут применяться для работы с различными типами устройств дуговой защиты серии AQ 100. В таблице, представленной ниже, приведены возможные сочетания датчиков и устройств дуговой защиты.

Табл. 4-1: Типы применяемых датчиков дуги

<table>
<thead>
<tr>
<th>AQ 01</th>
<th>AQ06</th>
<th>AQ07</th>
<th>AQ08</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ101</td>
<td>Да</td>
<td>Да (опционально)</td>
<td>Да (опционально)</td>
</tr>
<tr>
<td>AQ102</td>
<td>Нет</td>
<td>Да</td>
<td>Да</td>
</tr>
<tr>
<td>AQ110P</td>
<td>Да</td>
<td>Да (опционально)</td>
<td>Да (опционально)</td>
</tr>
<tr>
<td>AQ110F</td>
<td>Нет</td>
<td>Да</td>
<td>Да</td>
</tr>
</tbody>
</table>

4.6 ПОДКЛЮЧЕНИЕ ДАТЧИКОВ ДУГИ

4.6.1 ПОДКЛЮЧЕНИЕ ТОЧЕЧНОГО ДАТЧИКА ДУГИ AQ01

1) Снимите боковые крышки корпуса датчика, затем снимите клеммные колодки с печатной платы датчика и подготовьте экранированную витую пару для подключения. См. Рис. 4-6: Подключение датчика AQ01, шаг 1.
2) Подключение кабеля к клеммным колодкам должно выполняться в следующем порядке: +, сигнал, экран. Соответствующую информацию можно найти на нижней синей части корпуса датчика. Подключите кабель к клеммной колодке и зажмите с помощью отвертки. См. Рис. 4-4.

3) Подключите второй конец кабеля к каналу для датчика устройств AQ101 или AQ110P. См. Рис. 4-4: Подключение датчика AQ01, шаг 3.
4) Проверьте переднюю панель устройства. Должен гореть только СИД «POWER». См. Рис. 4-5: Подключение датчика AQ01 а, шаг 4.
5) Установите клеммную колодку обратно на печатную плату датчика. См. Рис. 4-6: Подключение датчика AQ01, шаг 5.
6) После подключения датчика к устройству должен загореться СИД «ERROR», а соответствующий СИД канала датчика должен мигать (например, СИД S1). См. Рис. 4-7: Подключение датчика AQ01, шаг 6.

7) Нажмите и удерживайте кнопку SET в течение 2 с. После этого должен начаться процесс автоконфигурирования. См. Рис. 4-8: Подключение
датчика AQ01, шаг 7. Устройство запомнит количество подключенных датчиков и количество задействованных дискретных входов (если таковые имеются).

8) После завершения процесса автоконфигурирования установите на место обе боковые крышки корпуса датчика. См. Рис. 4-9: Подключение датчика AQ01, шаг 8.

9) К одному входу для датчика устройства AQ101 можно подключить до трех последовательно соединенных датчиков дуги. См. Рис. 4-10: Подключение датчика AQ01, шаг 9.
Процесс автоконфигурирования входит в состав функции самодиагностики, которая позволяет определить готовность устройства к выполнению всех необходимых операций.
5 САМОДИАГНОСТИКА

Устройство AQ 101 имеет широкие возможности для самодиагностики. Самодиагностика относится как к внутренним функциям устройства, так и к внешним соединениям. Модуль самодиагностики контролирует наличие питания устройства, аппаратные и программные сбои, неисправности в цепях подключения датчиков и дискретных входов. Также контролируется целостность цепей TT. Повреждение в этих цепях вызовет срабатывание сигнализации. Настройки DIP-переключателей контролируются посредством сравнения действительного значения с информацией, хранящейся в энергонезависимой памяти устройства (см. раздел 3.3.1).

В нормальном режиме работы горит СИД «POWER», реле самодиагностики (SF) находится под напряжением. Если функция самодиагностики определяет наличие какой-либо неисправности, то реле самодиагностики отпадает, и загорается СИД «ERROR».

В случае возникновения какой-либо неисправности датчиков устройство переходит в аварийный режим. Загорается СИД «ERROR», SF реле отпускается, и начинает мигать соответствующий СИД поврежденной цепи датчика. В этом случае устройство будет выполнять защитные функции, однако неисправный датчик будет заблокирован. Если же неисправность будет устранена, то устройство автоматически сбросит СИД «ERROR» и поставит под напряжение SF реле. При отключении одного или нескольких датчиков остальные неповрежденные датчики остаются в работе, и устройство продолжает выполнять свои функции. AQ 101 при этом останется в аварийном режиме до тех пор, пока не будут устранены неисправности отключенных датчиков.

В случае, если настройки DIP-переключателей были изменены после автоконфигурирования (см. раздел 3.3.1), устройство перейдет в режим сигнализации о возникновении ошибки. Сконфигурированные (сохраненные) настройки при этом останутся действующими, и устройство будет выполнять свои функции.
6 ПРИМЕРЫ ВЫПОЛНЕНИЯ СХЕМ ДУГОВОЙ ЗАЩИТЫ
Устройства AQ 101 могут применяться для защиты различных типов распределительных устройств и шкафов управления. В данной главе приведены некоторые типовые схемы защиты с применением устройств AQ 101. Для получения более подробной информации обратитесь в ближайшее представительство компании Arcteq.

6.1 СХЕМА ЗАЩИТЫ ЭЛЕКТРОУСТАНОВОК СН ИЛИ НН (ПУСК ПО ФАКТАМ ПОЯВЛЕНИЯ ДУГИ И ВОЗНИКНОВЕНИЯ МАКСИМАЛЬНОГО ТОКА)
Устройство AQ 101 может применяться в случае необходимости выполнения дуговой защиты с пуском по фактам появления дуги и возникновения максимального тока. Защита будет действовать на отключение выключателя, только если оба пусковых фактора будут присутствовать одновременно. Обычно сигнал о возникновении максимального тока подается от устройства AQ 110. В этом случае выходное реле AQ 101 срабатывает через 7 мс. Возникновение максимального тока может контролироваться и другими устройствами (например, устройством защиты отходящей линии). В этом случае общее время срабатывания дуговой защиты будет зависеть от времени срабатывания устройства, контролирующего возникновение максимального тока.

Устройство AQ 101 может быть настроено таким образом, чтобы команда на отключение выключателя при срабатывании датчика канала S1 выдавалась без контроля максимального тока, в то время как команда на отключение при срабатывании остальных датчиков дуги будет выдаваться с контролем возникновения максимального тока.

На рис. 6-1 представлена схема защиты, где команда на отключение выключателя выдается без контроля максимального тока при срабатывании датчика канала S1, и с контролем максимального тока при срабатывании датчиков каналов S2, S3 и S4. Датчик канала S1 контролирует появление дуги на участке между вводной ячейкой и питающим трансформатором. К каждому каналу могут подключаться до трех датчиков дуги AQ01.

В данной схеме сигнал о возникновении максимального тока выдается внешним устройством максимальной токовой защиты.
Рис. 6-1: Примеры использования AQ101 и AQ101D для защиты электроустановок CH или НН
Датчик канала S1 контролирует участок до TT, поэтому контроль максимального тока для данного канала отсутствует. Сигнал о возникновении максимального тока может подаваться от внешнего устройства токовой защиты или от устройства дуговой защиты AQ 110. В данном примере сигнал подается от устройства максимальной токовой защиты (50/51).
6.2 СХЕМА ЗАЩИТЫ ВЕТРЯНОЙ ЭЛЕКТРОУСТАНОВКИ (ПУСК ПО ФАКТУ ПОЯВЛЕНИЯ ДУГИ)

Устройство AQ 101 может применяться в случае необходимости выполнения дуговой защиты с пуском только по факту появления дуги.

На рис. 6-2 представлена дуговая защита схемы, где синхронный генератор ветряной турбины подключен к сети через преобразователь и повышающий трансформатор.

Устройство AQ 101 имеет четыре канала точечных датчиков дуги. К каждому из каналов может быть подключено до трех датчиков типа AQ01, что позволяет устройству работать с 12 датчиками. Опционально устанавливается еще один канал для петлевого оптоволоконного датчика дуги. В данном примере используются три канала точечных датчиков, к каждому из которых подключено по три датчика дуги. Также используется петлевой оптоволоконный датчик для защиты обмоток генератора и их выводов. В случае появления дуги в любом из отсеков, где установлены датчики, устройство AQ 101 через 7 мс выдаст команду на отключение всех трех выключателей. Таким образом, общее время ликвидации повреждения будет составлять 7мс + время отключения выключателя. Дополнительно в схеме используется блокирующее реле T3, которое препятствует включению генератора, если повреждение не было устранено.
Рис. 6-2: Типовая схема защиты ветряной электроустановки с использованием AQ101 и AQ101D
6.3 УСТРОЙСТВО РЕЗЕРВИРОВАНИЯ ПРИ ОТКАЗЕ ВЫКЛЮЧАТЕЛЯ (УРОВ)

Устройство AQ 101 может выполнять функцию селективного УРОВ, которая настраивается с помощью DIP-переключателей. Функция УРОВ срабатывает в случае отказа выключателя при выполнении операции отключения. Отказ выключателя определяется по факту наличия дуги по истечении времени, заданного уставкой. Если же устройство AQ 101 срабатывает по фактам появления дуги и возникновения максимального тока, то для пуска УРОВ необходимо наличие обоих факторов. УРОВ может работать с выдержкой времени 100 мс или 150 мс (см. раздел настройки DIP-переключателей).
7 ПОДКЛЮЧЕНИЕ УСТРОЙСТВА К ВНЕШНИМ ЦЕПЯМ
Устройство дуговой защиты AQ 101. Руководство по эксплуатации

Рис. 7-1: Задняя панель устройства AQ 101
7.1 Выходы устройства

7.1.1 Выходные отключающие реле T1 и T2
Для воздействия на цепи отключения выключателей в устройстве AQ 101 имеются встроенные выходные реле T1 и T2. Реле T1 и T2 имеют нормально разомкнутые контакты (НО).

7.1.2 Выходные отключающие реле T3 и T4
Реле T3 может работать либо как реле с электронной блокировкой, либо как отключающее реле. Назначение данного реле должно быть указано при оформлении заказа. В случае заводской конфигурации реле T3 в качестве реле электронной блокировки, положение контактов данного реле будет нормально замкнутое (НЗ) и будет менять свое положение только в случае ручного сброса настроек или в случае потери оперативного питания. При восстановлении оперативного питания контакты реле электронной блокировки возвращаются в положение, предшествующее потере оперативного питания. Нормально замкнутые контакты выходного реле T3 могут быть использованы для коммутации цепей устройств, управляемых контактами.

Контакты реле T3 могут быть заказаны как нормально разомкнутые (NO).

Реле T3 дублирует работу реле T1 и срабатывает всякий раз при срабатывании реле T1.

Реле T4 является обычным отключающим реле, которое работает во время работы реле T1 и T2 и может быть использовано как для отключения так и для передачи сигнала об отключении в схему местной или дистанционной сигнализации.

7.1.3 Дискретный выход ДВых1
В устройстве предусмотрен один дискретный выход (+24 В пост. тока). Функция дискретного выхода может быть настроена с помощью DIP-переключателей (см. раздел 3.5).
Примечание: дискретный выход чувствителен к полярности (см. раздел 8).

7.1.4 Реле неисправности устройства SF
Двухпозиционное реле SF срабатывает при внутренней неисправности устройства. Сработанное положение контакта данного реле свидетельствует об отсутствии сбоев в работе. При обнаружении устройством AQ 101 системного сбоя или при исчезновении оперативного питания контакт реле меняет свое положение. Контакт остается в данном положении до восстановления нормальной работы.

7.2 Входы устройства
7.2.1 Каналы для подключения датчиков дуги S1, S2, S3, S4 и S5
Устройство AQ 101 имеет 4 канала для подключения точечных дуговых датчиков. К каждому каналу может быть подключено до 3 точечных датчиков дуги (типа AQ 01).
Устройство AQ 101 опционально оснащается одним каналом со встроенными приемопередатчиком и приемником (Tx, Rx) для подключения петлевого оптоволоконного датчика. Один конец данного оптоволоконного датчика подключается к Tx, а другой – к Rx. Исправность петлевого оптоволоконного датчика постоянно контролируется с помощью тестовых световых импульсов, проходящих через него. В случае разрыва (повреждения) петли устройство переходит в аварийный режим, загорается СИД «ERROR», сигнализирующий о неисправности, и срабатывает выходное реле SF.
Для получения дополнительной информации о датчиках см. главу 4.

7.2.2 Дискретные входы ДВх1 и ДВх2
В устройстве AQ 101 имеется два дискретных входа. Вход ДВх1 используется для приема сигнала о появлении второго пускового фактора. В типовых схемах дуговой защиты устройство AQ 101 получает сигнал о возникновении максимального тока от устройства Arcteq AQ 110. Такой сигнал может передаваться и от устройств других производителей (например, от других устройств релейной защиты). Также в качестве второго пускового фактора могут использоваться и другие сигналы (например, снижение напряжения или др.)
Примечание: если устройство AQ 101 получает сигнал о возникновении максимального тока не от устройства Arcteq, то полное время срабатывания защиты будет зависеть от времени срабатывания устройства, выдающего данный сигнал.

Дискретный вход ДВх2 может использоваться для приема сигнала отключения или сигнала о появлении дуги. Функция входа ДВх2 настраивается с помощью DIP-переключателей (см. главу 3.5).

Входы активируются при подаче на них сигнала пост. тока, превышающего установленную уставку для данного входа. Доступно 3 различных номинальных входных напряжений: 24, 110 или 220 В пост. тока. Желаемое номинальное входное напряжение должно быть указано при заказе. Срабатывание дискретного входа происходит при напряжении, составляющем 80% от указанного номинального значения (т.е 19 В пост. тока, 88 В пост. тока или 176 В пост. тока).

7.3 Оперативное питание
Напряжение оперативного питания составляет от 80 до 265 В как переменного так и постоянного тока. По заказу доступны версии с напряжением оперативного питания от 18 до 72 В пост. тока.
После подачи питания устройство защиты готово к работе через 50 мс.
8 СХЕМА ПОДКЛЮЧЕНИЯ УСТРОЙСТВА

Рис. 8-1: Схема подключения устройства AQ 101
9 ГАБАРИТНЫЕ РАЗМЕРЫ И МОНТАЖ УСТРОЙСТВА
Устройство AQ 101 можно монтировать как на дверь, так и на панель в стандартную 19-дюймовую стойку (высота 4U и 1/8 единицы в ширину).
Рис. 9-1: Размеры устройств AQ 101 и AQ 101D
Рис. 9-2: Размеры выреза для монтажа устройства AQ 101 на панели (мм)
10 ТЕСТИРОВАНИЕ

Рекомендуется произвести тестирование устройства AQ 101 до ввода подстанции в эксплуатацию. Тестирование осуществляется путем имитации светового потока дуги для каждого датчика и проверки правильности срабатывания выходных реле и светодиодной индикации устройства. Для имитации светового потока дуги необходимо использовать высококачественные вспышки для фотоаппаратов типа Canon Speedlite 430EX или аналогичные. Для проверки сигналов без запоминания состояния и функции УРОВ используйте фонарик Mini Maglite 2 CELL AAA или аналог. Убедитесь, что аккумуляторы вспышки или фонарика полностью заряжены.

10.1 ПРОВЕРКА РАБОТОСПОСОБНОСТИ УСТРОЙСТВА ПРИ ОТКЛЮЧЕНИИ ПО ФАКТУ ПОЯВЛЕНИЯ ДУГИ

1) Убедитесь, что DIP-переключатель настроен так, как этого требует ваша схема защиты.
2) Включите вспышку на расстоянии 20 см (12 дюймов) от датчика AQ01 или от петлевого оптоволоконного датчика AQ FLG, при его использовании.
3) Убедитесь, что СИД, соответствующий данному датчику, загорелся.
4) Убедитесь, что необходимое(-ые) выходное(-ые) реле сработало. Для этого проверьте положение выключателя или положение контактов выходного(-ых) реле. Выключатель должен отключиться, контакты выходного(-ых) реле должны поменять свое положение. Примечание: проверку рекомендуется проводить путем непосредственного воздействия на выключатель.
5) Убедитесь, что СИД, соответствующий данному выходному реле, загорелся.
6) При использовании дискретного выхода (ДВых1) проверьте сигнал от этого выхода: у входа, соответствующего данному выходу, должно поменяться состояние или измерьте напряжение данного выходного сигнала. Обратите внимание на то, что сигналы от выхода ДВых1 без запоминания состояния.
7) При использовании сигналов от дискретного выхода убедитесь, что СИД, соответствующий выходу ДВых1 горит.
8) Для сброса светодиодной индикации и выходных реле нажмите кнопку SET.
9) При использовании дискретного входа ДВх2 для приема сигнала отключения от устройства защиты ввода (МТ) активируйте его, и, повторив действия с 4 по 5, убедитесь, что был подан сигнал на отключение выключателя.
10) Для сброса светодиодной индикации и выходных реле нажмите кнопку SET.
11) Повторите процедуру тестирования для всех датчиков.
10.2 ПРОВЕРКА РАБОТОСПОСОБНОСТИ УСТРОЙСТВА ПРИ ОТКЛЮЧЕНИИ ПО ФАКТАМ ПОЯВЛЕНИЯ ДУГИ И ВОЗНИКНОВЕНИЯ МАКСИМАЛЬНОГО ТОКА

1) Убедитесь, что DIP-переключатель настроен так, как этого требует ваша схема защиты.
2) Включите вспышку на расстоянии 20 см (12 дюймов) от датчика AQ01 и активируйте дискретный вход ДВх1, который используется для приема сигнала о возникновении максимального тока.
3) Убедитесь, что СИД, соответствующий данному датчику, загорелся.
4) Убедитесь, что СИД, соответствующий данному датчику, загорелся.
5) Убедитесь, что необходимое(ые) выходное(ые) реле сработало. Для этого проверьте положение выключателя или положение контактов выходного(ых) реле. Выключатель должен отключиться, контакты выходного(ых) реле должны поменять свое положение. Примечание: проверку рекомендуется проводить путем непосредственного воздействия на выключатель.
6) Убедитесь, что СИД, соответствующий данному выходному реле, загорелся.
7) При использовании дискретного выхода (ДВых1) проверьте сигнал от этого выхода: у входа, соответствующего данному выходу, должно поменяться состояние или измерьте напряжение данного выходного сигнала.
8) При использовании сигналов от дискретного выхода убедитесь, что СИД, соответствующих выходу ДВых1 горит. Обратите внимание на то, что сигналы от выхода ДВых1 без запоминания состояния.
9) При использовании дискретного входа ДВх2 убедитесь в правильности его работы путем его активации.
10) Включите вспышку на расстоянии 20 см от датчика AQ01 и не активируйте дискретный вход, который используется для приема сигнала о возникновении максимального тока.
11) Убедитесь, что срабатывание не произошло, и загорелся СИД датчика.
12) Убедитесь, что выход ДВых1 активировался (если данный выход используется и сконфигурирован на выдачу сигнала о появлении дуги).
13) Для сброса светодиодной индикации и выходных реле нажмите кнопку SET.
14) При использовании дискретного входа ДВх2 для приема сигнала отключения от устройства защиты ввода (МТ) активируйте его, и, повторив действия с 4 по 5, убедитесь, что был подан сигнал на отключение выключателя.
15) Для сброса светодиодной индикации и выходных реле нажмите кнопку SET.
16) Повторите процедуру тестирования для всех датчиков.
10.3 ПРОВЕРКА ФУНКЦИИ УРОВ

Для проверки функции УРОВ на устройство необходимо подавать сигнал о появлении дуги и (при использовании) сигнал появления второго критерия отключения, например, возникновение максимального тока, в течение времени, превышающего уставку по времени УРОВ (100 или 150 мс). Выходное релеТ2, и дискретный выход ДВых1 должны сработать после заданной выдержки времени.

10.4 ПРОВЕРКА ВРЕМЕНИ СРАБАТЫВАНИЯ УСТРОЙСТВА ДУГОВОЙ ЗАЩИТЫ

Проверка времени срабатывания устройства AQ 101 во время пуско-наладочных работ не является обязательной, т.к. данная проверка осуществляется производителем во время типовых заводских испытаний. Обратитесь к протоколам типовых испытаний, поставляемых вместе с устройством AQ 101, и обратитесь в ближайшее представительство компании Arcteq для получения отчетов о типовых испытаниях. Однако, если данная проверка будет необходима, то ее можно произвести следующим образом.

1) Используйте только поверенную (калиброванную) испытательную установку для проверки устройств релейной защиты.
2) Подключите выход испытательной установки ко входу фотоспусков типа Metz 20B1 или аналогичной для того, чтобы включать вспышку и настроить таймер испытательной установки таким образом, чтобы он срабатывал одновременно со вспышкой.
3) Подключите выходные реле T1, T2, T3 или T4 устройства AQ 101 ко входам испытательной установки и сконфигурируйте входы на остановку таймера.
4) Поместите вспышку на расстоянии максимум в 20 см (12 дюймов) от датчиков AQ01 или AQ 07.
5) Включите вспышку и таймер, используя выходы испытательной установки.
6) Запомните время от начала работы вспышки (имитация дуги) до срабатывания выходных реле устройства.
7) При необходимости вычтите из полученного времени задержку срабатывания цифрового входа испытательной установки. Для проведения нетиповых испытаний с использованием испытательной установки обратитесь к ее производителю за консультацией.
10.5 Пример плана проверки

<table>
<thead>
<tr>
<th>Условия срабатывания</th>
<th>Наличие дуги</th>
<th>Наличие дуги + протекания максимального тока</th>
<th>Наличие дуги + протекания макс. тока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Настройка 1-го канала для подключения датчика</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Настройка 2,3,4-го канала для подключения датчика</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дискретный вход МТ используется (Да / Нет):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УРОВ введен (Да / Нет):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Активированные элементы</th>
<th>Светодиодные индикаторы</th>
<th>Т1,Т2,Т3,Т4 активны (введены)</th>
<th>ДВых1 активен (введен)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-й канал для подключения датчика</td>
<td>Датчик к 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-й канал для подключения датчика</td>
<td>Датчик к 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-й канал для подключения датчика</td>
<td>Датчик к 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-й канал для подключения датчика</td>
<td>Датчик к 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик к 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Датчик</td>
<td></td>
<td></td>
</tr>
<tr>
<td>к 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Канал для подключения петлевого оптоволоконного датчика (опция)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дискретный вход 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дискретный вход 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Проверку произвел:		
	Утверждено:		
11 Руководство по устранению неисправностей

<table>
<thead>
<tr>
<th>Проблема</th>
<th>Проверьте</th>
<th>Смотрите</th>
</tr>
</thead>
<tbody>
<tr>
<td>Невозможно активировать датчик при проведении провер</td>
<td>Подключение датчика</td>
<td>Главу 4 данного руководства</td>
</tr>
<tr>
<td></td>
<td>Интенсивность вспышки фотокамеры (либо другого проверочного устройства)</td>
<td>Главу 5 данного руководства</td>
</tr>
<tr>
<td>Выходное(-ые) реле отключения не срабатывают в случае срабатывания датчика</td>
<td>Настройки DIP-переключателей</td>
<td>Раздел 3.5 данного руководства</td>
</tr>
</tbody>
</table>

Таблица 11-1: Устранение неисправностей
12 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВА

12.1 ВРЕМЯ СРАБАТЫВАНИЯ/ВОЗВРАТА

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Время срабатывания при использовании механических выходных реле</td>
<td>7 мс*</td>
</tr>
<tr>
<td>Время возврата пускового органа (появление дуги)</td>
<td>2 мс</td>
</tr>
<tr>
<td>Восстановление работоспособности после подачи оперативного питания</td>
<td>88 мс</td>
</tr>
</tbody>
</table>

*полное время срабатывания при отключении по факту появления дуги (L>) или по фактам возникновения максимальных токов (фазные токи, ток небаланса) (I>) от AQ 110 и появления дуги (L>)

12.2 ОПЕРАТИВНОЕ ПИТАНИЕ

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение</td>
<td>80...265 В пост./перем. тока (по заказу: 18...72 В пост. тока)</td>
</tr>
<tr>
<td>Допустимый перерыв питания</td>
<td>100 мс</td>
</tr>
<tr>
<td>Максимальная потребляемая мощность</td>
<td>5 Вт, <10 мОм</td>
</tr>
<tr>
<td>Ток, потребляемый в режиме ожидания</td>
<td>90 мА</td>
</tr>
</tbody>
</table>

12.3 ВЫХОДНЫЕ ОТКЛЮЧАЮЩИЕ РЕЛЕ T1, T2, T3, T4

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество</td>
<td>3 НО + 1 НЗ или 4 НО</td>
</tr>
<tr>
<td>Номинальное напряжение</td>
<td>250 В пост./перем. тока</td>
</tr>
<tr>
<td>Длительно допустимый ток</td>
<td>5 А</td>
</tr>
<tr>
<td>Допустимый ток в течение 0,5 с</td>
<td>30 А</td>
</tr>
<tr>
<td>Допустимый ток в течение 3 с</td>
<td>16 А</td>
</tr>
<tr>
<td>Отключающая способность постоянного тока, при постоянной времени L / R = 40 мс</td>
<td>40 Вт; 0.36 А при 110 В пост. тока</td>
</tr>
<tr>
<td>Материал контактов</td>
<td>AgNi 90/10</td>
</tr>
</tbody>
</table>

12.4 ДИСКРЕТНЫЙ ВЫХОД ДВых1

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальное напряжение</td>
<td>+24 В пост. тока</td>
</tr>
<tr>
<td>Номинальный ток</td>
<td>20 мА (максимально)</td>
</tr>
<tr>
<td>Количество выходов</td>
<td>1</td>
</tr>
</tbody>
</table>
12.5 ДИСКРЕТНЫЕ ВХОДЫ ДВх1, ДВх2

<table>
<thead>
<tr>
<th>Номинальное напряжение</th>
<th>24, 110 или 220 В пост. тока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальный ток</td>
<td>3 мА</td>
</tr>
<tr>
<td>Количество выходов</td>
<td>2</td>
</tr>
</tbody>
</table>

12.6 ИСПЫТАНИЯ НА ЭЛЕКТРОМАГНИТНУЮ СОВМЕСТИМОСТЬ

<table>
<thead>
<tr>
<th>ЭМС ТЕСТЫ</th>
<th>аттестация СЕ, испытан в соответствии с МЭК 50081-2, EN 50082-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Излучение</td>
<td></td>
</tr>
<tr>
<td>- излучение (МЭК 55011 класс A)</td>
<td>0.15 - 30 МГц</td>
</tr>
<tr>
<td>- поглощение (МЭК 55011 класс A)</td>
<td>30 - 1 000 МГц</td>
</tr>
<tr>
<td>Устойчивость</td>
<td></td>
</tr>
<tr>
<td>- Электростатический разряд (ESD) (В соответствии с МЭК44-22-2 и МЭК61000-4-2, класс III)</td>
<td>Воздушный разряд 15 кВ</td>
</tr>
<tr>
<td></td>
<td>Контактный разряд 8 кВ</td>
</tr>
<tr>
<td>- Наносекундные импульсные помехи (EFT) (В соответствии с EN61000-4-4, класс III и МЭК 801-4, уровень 4)</td>
<td>Вход питания 4 кВ, 5/50 нс</td>
</tr>
<tr>
<td></td>
<td>Другие входы/выходы 4 кВ, 5/50 нс</td>
</tr>
<tr>
<td>- Импульсное перенапряжение (В соответствии с EN61000-4-5 [09/96], уровень 4)</td>
<td>Между фазами 2 кВ / 1.2/50 мкс</td>
</tr>
<tr>
<td></td>
<td>Между фазой и землей 4 кВ / 1.2/50 мкс</td>
</tr>
<tr>
<td>- Радиочастотное электромагнитное поле (В соответствии с EN 61000-4-3, класс III)</td>
<td>f = 80….1000 МГц 10 В /м</td>
</tr>
<tr>
<td>- Кондуктивные радиочастотные помехи (В соответствии с EN 61000-4-6, класс III)</td>
<td>f = 150 кГц….80 МГц 10 В</td>
</tr>
</tbody>
</table>

12.7 ИСПЫТАНИЯ ПОВЫШЕННЫМ НАПРЯЖЕНИЕМ

<table>
<thead>
<tr>
<th>Электрическая прочность изоляции в соответствии с МЭК 60255-5</th>
<th>2 кВ, 50 Гц, 1 мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Электрическая изоляция от импульсного напряжения в соответствии с МЭК 60255-5</td>
<td>5 кВ, 1.2/50 мкс, 0.5 Дж</td>
</tr>
</tbody>
</table>

12.8 МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ
Испытания на вибростойкость
2...13.2 Гц ±3.5 мм
13.2...100 Гц, ±1.0 г

Испытания на ударопрочность МЭК 60255-21-2
20g, 1000 ударов/направление

12.9 КОРПУС И УПАКОВКА

Степень защиты (лицевая часть)	IP 50
Степень защиты (задняя часть)	IP 20
Габариты (Ш х В х Г, мм)	45 х 164 х 157 мм
Вес	0.7 кг
	1.0 кг (с упаковкой)

12.10 КЛИМАТИЧЕСКИЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ

Диапазон рабочих температур	-35...+70°C
Температура транспортировки и хранения	-40...+70°C
Относительная влажность воздуха	до 97%
13 ЗАКАЗНЫЕ КОДЫ
13.1 УСТРОЙСТВО AQ 101 с точечными датчиками дуги

- **Auxiliary power supply**
 A 80...265 V ac/dc
 B 18...72 Vdc

- **Trip relay T3 characteristic**
 A Normally open (NO) type
 B Normally closed (NC) type

- **Additional sensor channels**
 A None
 B Fiber optic sensor channel

- **Binary inputs nominal voltage**
 A 24 Vdc
 B 110 Vdc
 C 220 Vdc

13.2 УСТРОЙСТВО AQ 101D (МОНТАЖ НА РЕЙКЕ DIN)

- **Auxiliary power supply**
 A 80...265 V ac/dc
 B 18...72 Vdc

- **Trip relay T3 characteristic**
 A Normally open (NO) type
 B Normally closed (NC) type

- **Additional sensor channels**
 A None
 B Fiber optic sensor channel

- **Binary inputs nominal voltage**
 A 24 Vdc
 B 110 Vdc
 C 220 Vdc
13.3 Датчики дуги AQ 0х

Sensor function
1. Light point sensor unit
2. Reserved for future use
3. Reserved for future use
4. Reserved for future use
5. Reserved for future use
6. Plastic fiber optic loop sensor
7. Glass fiber optic loop sensor
8. Glass fiber optic loop sensor (high temperature)
9. Reserved for future use

Cable length
- See the min and max lengths in the instruction manual
14 СПРАВОЧНАЯ ИНФОРМАЦИЯ

Информация о производителе:
Arcteq Relays Ltd. Finland

Адрес для посещений и почтовых отправлений:
Wolffintie 36 F 11
65200 Vaasa, Finland

Контакты:
Телефон: +358 10 3221 370
Факс: +358 10 3221 389
url: www.arcteq.fi
email отдела продаж: sales@arcteq.fi
email отдела технической поддержки: support@arcteq.fi